Distributed Computing and Big Data: Hadoop and MapReduce

Bill Keenan, Director
Terry Heinze, Architect

Thomson Reuters Research & Development
Agenda

• R&D Overview
• Hadoop and MapReduce Overview
• Use Case: Clustering Legal Documents
Thomson Reuters

- Leading source of intelligent information for the world’s businesses and professionals.
- 55,000+ employees across more than 100 countries
- Financial, Legal, Tax and Accounting, Healthcare, Science and Media markets
- Powered by the world’s most trusted news organization (Reuters).
Overview of Corporate R&D

• 40+ computer scientists
 – Research scientists, Ph.D. or equivalent
 – Software engineers, architects, project managers

• Highly focused areas of expertise
 – Information retrieval, text categorization, financial research
 – Financial analysis
 – Text & data mining, machine learning
 – Web service development, Hadoop
Our International Roots
Role Of Corporate R&D

Anticipate

Research

Partner

Deliver
Hadoop and MapReduce
Big Data and Distributed Computing

• Big Data at Thomson Reuters
 – More than 10 petabytes in Eagan alone
 – Major data centers around globe: financial markets, tick history, healthcare, public records, legal documents

• Distributed Computing
 – Multiple architectures and use cases
 – Focus today: using multiple servers, each working on part of job, each doing same task
 – Key Challenges:
 • Work distribution and orchestration
 • Error recovery
 • Scalability and management
Hadoop & MapReduce

• **Hadoop**: A software framework that supports distributed computing using MapReduce
 – Distributed, redundant file system (HDFS)
 – Job distribution, balancing, recovery, scheduler, etc.

• **MapReduce**: A programming paradigm that is composed of two functions (~ relations)
 – Map
 – Reduce
 – Both are quite similar to their functional programming cousins

• Many add-ons
Hadoop Clusters

- NameNode: stores location of all data blocks
- Job Tracker: work manager
- Task Tracker: manages tasks on one Data Node
- Client accesses data on HDFS, sends jobs to Job Tracker
HDFS Key Concepts

- Google File System
- Single point failure
- Small # of large files
- Incomplete security
- Streaming batch processes
- Not only for MapReduce
- Redundant, rack aware
- Failure resistant
- Write-once (usually), read many
Map/Reduce Key Concepts

- <key,value>
- Mappers: input -> intermediate kv pairs
- Reducers: intermediate -> output kv pairs
- InputSplits
- Progress reporting
- Shuffling, partitioning
- Scheduling
- Task distribution
- Topology aware
- Distributed cache
- Recovery
- Compression
- Bad Records
- Speculative execution
Use Cases

- Query log processing
- Query mining
- Text Mining
- XML transformations
- Classification
- Document Clustering
- Entity Extraction
Case Study: Large Scale ETL

• Big Data: Public Records

• Warehouse loading long process, expensive infrastructure, complex management

• Combine data from multiple repositories (extract, transform, load)

• Idea:
 – Use Hadoop’s natural ETL capabilities
 – Use existing shared infrastructure
Why Hadoop

• Big data – billions of documents
• Needed to process each document, combine information
• Expected multiple passes, multiple types of transformations
• Minimal workflow coding
Use Case: Language Modeling

• Build Languages Models from clusters of legal documents
• Large initial corpus: 7,000,000 xml documents
• Corpus grows over time
Process

• Prepare the input
 – Remove duplicates from the corpus
 – Remove stop words (common English, high frequency terms)
 – Stem
 – Convert to binary (sparse TF vector)
 – Create centroids for seed clusters
Process

List of Document IDs belonging to this Seed Clusters

Encoded Documents

Input

Seed Clusters

Output

Seed clusters encoded

Cluster Centroids

C-values for each document

Preprocess
Process

• Clustering
 – Iterate until number of clusters equals goal
 • Multiply matrix of document vectors and matrix of cluster centroids
 • Assign document to best cluster
 • Merge clusters and re-compute centroids
Process

- Repeat the loop until all the clusters are merged.

Input

Seed Clusters C-vectors

Generate Cluster vectors

Run Algorithm

Merge Clusters

Merge List W-values
Process

• Validate and Analyze Clusters
 – Create classifier from clusters
 – Assign all non-clustered documents to clusters using the classifier
 – Build Language Model for each cluster
Prepare Input using Hadoop

• Fits the Map/Reduce paradigm
 – Each document is atomic: documents can be equally distributed within the HDFS
 – Each mapper removes stop words, tokenizes, and stems
 – Mappers emit token counts, hashes, and tokenized documents
 – Reducers build Document Frequency dictionary (basically, the “word count” example)
 – Reduces the hashes to a single document (de-duplication)
 – Additional Map/Reduce converts tokenized documents to sparse vectors using the DF dictionary
 – Additional MapReduce maps document vectors and seed cluster ids and reducer generates centroids
Sample Flow

1. Distribute documents from HDFS
2. Remove stop words, stem
3. Emit filtered documents, word counts
4. Reduce
5. Emit dictionary, filtered documents

HDFS
Clustering using Hadoop

• Map/Reduce paradigm
 – Each document vector is atomic: documents can be equally distributed within the HDFS
 – Mapper initialization required loading large matrix of cluster centroids
 – Large memory utilization to hold matrix multiplications
 – Decompose matrices into smaller chunks and run multiple map/reduce steps to obtain final result matrix (new clusters)
Validate and Analyze Clusters using Hadoop

• Map/Reduce paradigm
 – A document classifier based on the documents within the clusters was built
 • n.b. the classifier itself was trained using Hadoop
 – Un-clustered documents (still in the HDFS) are classified in a mapper and assigned a cluster id.
 – A reduction step then takes each set of original documents in a cluster and creates a language model for each cluster
Distribute documents

Extract n-grams, emit by cluster id

Build language model for each cluster

Sample Flow

HDFS

Task node

Mapper

Reduce

HDFS
Using Hadoop

• Other Experiments
 – WestlawNext Log Processing
 • Billions of raw usage events are generated
 • Used Hadoop to map raw events to a user’s individual session
 • Reducers created complex session objects
 • Session objects reducible to xml for xpath queries for mining user behavior
 – Remote Logging
 • Provide a way to create and search centralized Hadoop job logs, by host, job, and task ids
 • Send the logs to a message queue
 • Browse the queue or…
 • Pull the logs from the queue and retain them in a db
Remote Logging: Browsing Client
Lessons learned

• State of Hadoop
 – Weak security model, changes in works
 – Cluster configuration, management and optimization still sometimes difficult
 – Users can overload a cluster. Need to balance optimization and safety.

• Learning curve moderate
 – Quick to run first naïve MR programs
 – Skill/experience required for advanced or optimized processes
Lessons Learned

• Loading HDFS is time consuming: Wrote multi-threaded loader to reduce bound IO

• Multiple step process needed to be re-run using different test corpuses: Wrote parameterized Perl script to submit jobs to the Hadoop cluster

• Test Hadoop on a single node cluster first: Install Hadoop locally
 • Local mode within Eclipse (Windows, Mac)
 • Pseudo-distributed mode (Mac, Cygwin, VMWare) using Hadoop plugin (Karmasphere)
Lessons Learned

- Tracking intermediate results: Detect bad or inconsistent results after each iteration
 - Record messages to Hadoop node logs
 - Create remote logger (event detector) to broadcast status

- Regression tests: Small, sample corpus run through local Hadoop and distributed Hadoop. Intermediate and final results compared against reference results created by baseline Matlab application
Lessons Learned

• Performance evaluations
 – Detect bad or inconsistent results after each iteration
 – Don’t accept long duration tasks as “normal”
 • Regression test on Hadoop took 4 hours while same Matlab test took seconds (because of the need to spread the matrix operations over several map/reduce steps)
 • Re-evaluated core algorithm and found ways to eliminate and compress steps related to cluster merging
 – Direct conversion of mathematics, as developed, to java structures and map/reduce was not efficient
 • New clustering process no longer uses Hadoop: 6 hours on single machine vs. 6 days on 20 node Hadoop cluster
 – As size corpus grows, we will need to migrate new cluster algorithm back to Hadoop
Lessons Learned

• Performance evaluations
 – Leverage combiners and mapper statics
 • Reduce the amount of data during shuffle
Lessons Learned

• Releases are still volatile
 – Core API changed significantly from release .19 to .20
 – Functionality related to distributed cache changed
 (application files loaded to each node at runtime)
 – Eclipse Hadoop plugins
 • Source code only with release .20 and only works in older
 Eclipse versions on Windows
 • Karmasphere plugin (Eclipse and NetBeans) more mature but
 still more of a concept than productive
 • Just use Eclipse for testing Hadoop code in local mode
 – Develop alternatives for handling distributed cache
Reading

Hadoop
The Definitive Guide
Tom White
O'Reilly

Data-Intensive Text Processing with MapReduce
Jimmy Lin and Chris Dyer
University of Maryland
Questions?

Thank you.